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2 - Background 

At Ref A Dr Victor Yakovenko describes 

the formula for entropy that he uses to 

calculate entropy in his capital exchange 

models.  He ascribes the basic formula to 

Ludwig Boltzmann, and uses the 

multinomial coefficient from combinatorics 

(Eq (3)) and then the formula that is very 

reminiscent of Shannon’s formula (Eq (4)).   

 

I refer to these two equations often, so I 

indicate them as (3) and (4) with round 

parentheses and my own equations are 

enclosed with square brackets like this: [3] 

or [4].  At Ref B I have analyzed the 

entropy levels associated with states of 

Model I of EiLab.  I am now in the process 

of closely examining the tools used in that 

analysis.  Refs C, D and E are Wikipedia 

articles discussing entropy as understood 

by three creative enunciators of the 

concept: Gibbs, Boltzmann, and Shannon.  

Ref F is a note from Wikipedia about Stirling’s approximation for the function ln(N!) to be used 

when N is large.  Stirling’s approximation plays a key role in this note, and variations on it play a 

key role in the series of notes. 

 

The concept of entropy was first formulated in the fields of chemistry (Gibbs) and 

thermodynamics (Boltzmann) where the numbers of particles under consideration were of the 

order of 10
23

 (Avogadro’s Number).  To handle such inconceivably large numbers, certain 

mathematical techniques had to be developed.  However, when I work on agent-based models 

(ABMs) I am working with numbers in the low hundreds, or teens, or often, zeros.  I need to 

understand whether and how the various standard formulae perform with numbers at this low end 

Figure 01 – Yakovenko’s Formulae 

 
From the Ref A paper. 
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of the domain.  A first step, it seems, is to establish the mathematical connection between the 

classic formulae of Boltzmann [ 𝑆𝐵
 = 𝑘𝐵  ln()] and Shannon [ 𝑆𝑆

 = − ∑ (𝑝𝑖 ln(𝑝𝑖))𝑘
𝑖=1 ]. 

 

Ref G is a spreadsheet in which I tested the two formulae on the same set of 1,000 histograms. 

3 - Purpose 

The purpose of this note is quite simply to outline the mathematical connection between 

Boltzmann’s classic equation for entropy, and that of Shannon.   The goal is to better understand 

which formula is most useful for my studies of entropy when working with ABMs.   

4 - Discussion 

I will be examining entropy from two traditions or logical regimes.  I will be distinguishing the 

entropy as calculated in each regime with a left-subscript like this: 

 BS for the “Entropy in the Boltzmann regime” 

 SS for the “Entropy in the Shannon regime” 

 S will be used for entropy in general 

4.1 - Entropy – Boltzmann’s Equation 

Historically, Boltzmann defined entropy with the following formula: 

 

 𝑆𝐵
 = 𝑘𝐵 × 𝑙𝑛(𝛺) [1] 

 

By this he converted Clausius’ empirical definition into a “statistical mechanics” definition.  This 

definition seems somewhat arbitrary to me.  Jaynes implies it was determined by guess and 

check method.  I cannot challenge it.  I cannot see the reason for it.  It is opaque to me.  So I 

accept it as probably reasonable, and use it.   

 

Deciding that this measure of entropy is “correct” is somewhat similar, I think, to deciding that 

an arithmetic or geometric average is a correct measure.  It is arbitrary, not having any innate 

characteristic that makes it more natural or more correct than any other measure.  But, with 

consensus that others will use the same formula and interpret it the same way, it becomes 

pragmatically useful, and common agreement of all users makes it “correct”. 

 

So, my approach to entropy in ABMs is somewhat arbitrarily based on Boltzmann’s 

interpretation of Clausius’ work.  Replacing Ω with its combinatorial equivalent in terms of 

using A and ai, and replacing kB with a general dimensionless scaling factor C, as suggested by 

Yakovenko’s paper, I get: 

 

 𝑆𝐵
 = 𝐶𝐵

 × 𝑙𝑛() = 𝐶𝐵
 × 𝑙𝑛 (

𝐴!

∏ (𝑎𝑖!)𝐾
𝑖=1

) [2] 

which resolves to: 

 𝑆𝐵
 = 𝐶𝐵

 × [𝑙𝑛(𝐴!) − ∑ ln (𝑎𝑖!)
𝐾
𝑖=1 ] [3] 

 

This is a definition of entropy consistent with Boltzmann’s regime: 

 As described in the Ref C Wikipedia article; 
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 Augmented by the appropriate insertion of the multinomial coefficient shown in equation (3) 

in the Ref A paper (as shown in Figure 01); and 

 With a change of variables suitable for use in agent-based models (ABMs). 

 

The symbols and their meanings are: 

 BS is entropy, and the B means in the regime associated with Boltzmann’s work; 

 BC is a dimensionless scaling factor – I don’t know if this will be needed eventually, but it is 

there for now as a place-holder; 

 ln() is the monadic function that calculates the natural logarithm of a number; 

 ! is the monadic function that calculates the factorial of a number; 

 A is the number of agents in the model; 

 ai is the number of agents that have been sorted into bin i of a histogram; and 

  is the summation function. 

4.2 - Entropy – Shannon’s Equation 

On the other hand, Shannon’s Equation, as described in the Ref D article, is very similar in form 

to equation (4) of Yakovenko’s Ref A document. (See equation (4) in Figure 01.)    As given in 

that Ref D article Shannon’s version of entropy has this formula: 

  [4] 

Using my own notation, this would be: 

 𝑆𝑆
 = 𝐶𝑆

 × − ∑ (
𝑎𝑖

𝐴
× ln (

𝑎𝑖

𝐴
))𝑘

𝑖=1  [5] 

 

Where SC is a dimensionless scaling factor – a place-holder. 

4.3 - Stirling’s approximation – Classic form 

I understand that Boltzmann’s version of the formula, as shown in equations [1] through [3], can 

be converted to Shannon’s version of the formula, as shown in equation [4], through a 

substitution of Stirling’s approximation for ln(A!) with a formula that has several elaborations, 

each with improved accuracy.  In fact, Stirling’s formula for ln(A!) as described in Ref F can be 

written as the sum of an infinite series of terms in which each term provides additional accuracy. 

 

According to the Wikipedia article referenced above, Stirling’s approximation to A! is an infinite 

series, but is it often used in a basic truncated form, as per equation [6].  The most basic (i.e. 

inaccurate) version of Stirling’s approximation looks like this: 

 

 ln(𝐴!) = 𝐴 ln(𝐴) − 𝐴 + 𝐸𝑟𝑟𝑜𝑟 [6] 

4.4 - Derivation of Shannon from Boltzmann 

So, working with a basic form of Stirling’s approximation as shown in equation [6] in which the 

error is ignored, here I reconstruct the derivation of Yakovenko’s equation (4) from my equation 
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[3].  Start with the exact expression stated in equation [3], and ignoring the dimensionless scaling 

factor C for the nonce: 

 

 𝑆𝐵
 = 𝐶𝐵

 × [𝑙𝑛(𝐴!) − ∑ ln(𝑎𝑖!)  𝐾
𝑖=1 ] [7] 

 

Making the substitution of [6] into [7] for both ln(A!) and ln(ai!): 

 

 𝑆𝐵
 ≈ 𝐶𝐵

 × ([(𝐴 𝑙𝑛(𝐴)) − 𝐴] − ∑ [𝑎𝑖 ln(𝑎𝑖) − 𝑎𝑖]
𝐾
𝑖=1 ) [8] 

 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) − 𝐴 − ∑ 𝑎𝑖 ln(𝑎𝑖)
𝐾
𝑖=1 + ∑ 𝑎𝑖

𝐾
𝑖=1 ] [9] 

 

The second term and the fourth term cancel out, leaving: 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) − ∑ 𝑎𝑖 ln(𝑎𝑖)
𝐾
𝑖=1 ] [10] 

 

Let 

 𝑝𝑖 = (
𝑎𝑖

𝐴
)     and     𝑎𝑖 = 𝐴  𝑝𝑖 [11] 

 

So, making a substitution and changing the sign on the sum by inverting the argument of ln(): 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) + ∑ 𝐴  𝑝𝑖 ln (
1

𝐴  𝑝𝑖
)𝐾

𝑖=1 ] [12] 

 

Add and subtract a term within the brackets: 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) + ∑ 𝐴  𝑝
𝑖
 ln (

1

𝐴  𝑝𝑖

)𝐾
𝑖=1 + ∑ 𝐴  𝑝

𝑖
 ln(𝐴)𝐾

𝑖=1 − ∑ 𝐴  𝑝
𝑖
 ln(𝐴)𝐾

𝑖=1 ] [13] 

 

Combine the two middle terms within the brackets: 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) + ∑ 𝐴  𝑝𝑖 ln (
𝐴

𝐴  𝑝𝑖
)𝐾

𝑖=1 − ∑ 𝐴  𝑝𝑖 ln(𝐴)𝐾
𝑖=1 ] [14] 

 

Combine the first and last terms within the brackets: 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [(𝐴 𝑙𝑛(𝐴)) [1 − ∑  𝑝𝑖
𝐾
𝑖=1 ] + ∑ 𝐴  𝑝𝑖 ln (

𝐴

𝐴  𝑝𝑖
)𝐾

𝑖=1 ] [15] 

 

But, noting that  

 ∑ 𝑝𝑖
𝐾
𝑖=1 = ∑

𝑎𝑖

𝐴

𝐾
𝑖=1 =

1

𝐴
∑ 𝑎𝑖

𝐾
𝑖=1 = 1 [16] 

 

So 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [∑ 𝐴  𝑝𝑖 ln (
1

𝑝𝑖
)𝐾

𝑖=1 ] [17] 

 

or 

 𝑆𝐵
 ≈ 𝐶𝐵

 × [−𝐴 ∑ 𝑝𝑖 ln(𝑝𝑖)
𝐾
𝑖=1 ] [18] 

 

or 

 𝑆𝐵
 ≈ [

𝐶𝐵
 

𝐶𝑆
 ] × 𝐴 × 𝑆𝑆

  [19] 
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Dividing by A we get: 

 
𝑆𝐵

 

𝐴
≈ [

𝐶𝐵
 

𝐶𝑆
 ] × [− ∑ 𝑝𝑖 ln(𝑝𝑖)

𝐾
𝑖=1 ] [20] 

 

If the dimensionless scaling factors are equal, i.e. if BC = SC, then we get: 

 
𝑆𝐵

 

𝐴
≈ − ∑ 𝑝𝑖 ln(𝑝𝑖)

𝐾
𝑖=1  [21] 

 

This replicates equation (4) of Yakovenko’s Ref A paper.  The symbol ≈ is meant to imply that 

this is an approximate answer, and its accuracy is dependent upon the accuracy of Stirling’s 

approximation as used in the argument (at equation [6]).  Equation [21] raised a question about 

proper units of measure for entropy in the two regimes.  I will address that question in a separate 

diary note.  But, the more important implication of equation [21] is this:  SS must be multiplied 

by A to make it commensurable with BS. 

4.5 - Custom Functions – Surprisal(A, ai) and LawnOfXFactorial(x) 

At Ref G I made a spreadsheet in which I calculate the entropy using both the Boltzmann and 

Shannon regimes.   

 

In order to evaluate the Shannon formula I decided to implement a custom function which I 

called Surprisal(A, ai).  A surprisal is one term of the sum – i.e. [𝑝𝑖 ln(𝑝𝑖)] is a surprisal.  This 

cannot be evaluated when pi = 0, but the contribution of such a surprisal to the total entropy is 

zero.  So, using the techniques documented at Ref H, I implemented a custom function which 

checks for zeros as arguments and handles them appropriately. 

 
 

Similarly, the formula using the multinomial coefficient requires the evaluation of ln(A!) for 

numbers greater than 170, and most computers have difficulty with this.  I use a function called 

LawnOfXFactorial(x) to compute such numbers, when needed. 
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4.6 - Comparison of Shannon and Boltzmann 

At Ref G I made a spreadsheet with 1,000 random histograms.  For each bin in each histogram I 

generated a random number between 0 and 200.  In each histogram I made five such bins (K=5), 

so the average bin size would be ~100, with some above 170.  I therefore used custom functions 

to calculate both the ln(x!) numbers for the Boltzmann equation, and the surprisals for the 

Shannon equation. 

 

The results were interesting.  Define the following spreadsheet labels: 

 Let the results from the Boltzmann calculation BS.   

 Let the results from the Shannon calculation SS.    

 Let the error be E = BS – [ASS]. 

 Let the error squared be E
2
 = E*E. 

 Let the absolute error be ABS(E). 

 Summary: Let the RMS error be SUM(E
2
)
1/2

 for all E.  

 Summary: Let the average error be AVE(E) for all E. 

 Summary: Let the average absolute value of error be AVE(ABS(E)). 

 

The summary results of one run plus the first few detailed rows of the table of 1,000 sets of 

results is: 

 
 

And, here is a scatter graph of [ASS] VS BS: 
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The equation of the linear trend line was rather consistent across twelve trials of 1,000 

histograms per trial.  Here’s the descriptive statistics for the 12 trials. 

 

 
 

Based on this it seems that the connection between SS and BS is: 

 𝐴 × 𝑆𝑆
 ≈ [0.9978 ± 0.0003] 𝑆𝐵

 + [14.15 ± 0.19] [21] 

 

Or, alternately: 

 𝑆𝐵
 ≈

[𝐴× 𝑆𝐵
 ]−[14.15±0.19]

[0.9978±0.0003]
 [22] 

 

This introduces a bias of 14 that has a relatively large impact when SS or BS is small, and that is 

the part of the domain of S in which ABMs will normally be operational.  That is a concern. 

4.7 - Conclusions 

I have learned several notable things from this exercise: 
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 There are several versions of “Stirling’s Approximation” formula, and the connection 

between Boltzmann and Shannon uses one of the weaker (less accurate) versions.  This 

implies that whatever the weakness is, it is transferred in some fashion to Shannon’s formula. 

 Shannon’s formula is unable to cope with bins having a zero in them.  The natural logarithm 

of zero is undefined, but the surprisal of an empty bin is zero.  Special processing is needed 

to avoid the undefined value. 

 Of the two formulae, Boltzmann’s seems to be more directly applicable to ABMs in which 

small numbers of agents are involved, and the partitions include a lot of bins with small 

numbers of agents (e.g. tens rather than trillions). 

 However, Boltzmann’s formula also needs to depend on Stirling’s formula when calculating 

larger values of ln(A!), so special knowledge of that formula is needed whichever of these 

regimes I decide to use. 

 

Somewhat arbitrarily, I have decided that I will use the formula that more accurately reflects the 

“true” unbiased entropy when doing calculations for ABMs.  I.e. I will use the formula that is 

directly derived from (a) Boltzmann’s formula and (b) the multinomial coefficient, without the 

intercession of (c) Stirling’s approximation.  More specifically, I will use my equation (3).  

However, I will still need to use Stirling’s approximation (some version of it) to actually evaluate 

the entropy within an ABM – specifically when large numbers are involved.  I am making a 

distinction between the use of Stirling’s approximation as a means to produce a derivative 

formula analytically, as I did in equations [6] through [21], and the use of it as a means to 

evaluate a specific measure of a system.  The derivative formula is biased, whereas a specific 

measurement will introduce error that can be managed.  I am thinking here specifically of the 

problem of using Stirling’s approximation when A or ai are small.  This can be easily avoided 

when using my equation [3].  It cannot be so easily avoided when using equation [20] since the 

approximate nature of Stirling’s truncated series is now innate to equation [20].   

 

Furthermore, the interpretation of equation [20] in the context of an ABM is curious.  It 

calculates the entropy per agent.  In the context of information theory and bits which are either 

on (a 1) or off (a 0), I would presume that A is the number of 1s in the bit stream.  This raises 

two questions for me, for which I do not currently have an answer: 

 Does this imply, in any way, that entropy can be localized to a single agent? 

 Does a better understanding of the usual units of measure of entropy in information theory 

provide insight into the meaning of equation [20]? 

5 - Summary 

At Ref A Yakovenko suggested that  as used in Boltzmann’s equation (see my equation [1]) for 

entropy can be replaced by the combinatorial multinomial coefficient (see Yakovenko’s equation 

(3)).  He then presented another equation (see Yakovenko’s equation (4)) looking very much like 

Shannon’s equation for information entropy. 

 

Stirling developed a sophisticated sum of an infinite series which evaluates to ln(A!) when A is 

large.  A truncated version of this infinite series is often used for pragmatic estimates. 

 

Using a severely truncated version of Stirling’s formula I showed how Yakovenko’s cited 

equation (4) derives from my equation [1]. 
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I considered what insights this exercise has given me with respect to calculation and 

interpretation of entropy in an ABM. 

6 - Yet-To-Do 

To understand this better, I need to investigate: 

 The impact of the error inherent in Stirling’s approximation; 

 The units of measure for entropy in information theory and thermodynamics; and 

 The implication for interpretation of economic entropy, as described in my Ref B paper. 

 


